УДК 532.516.5:532.582.31

А. В. Коптев, канд. физ.-мат. наук, доцент, ГУМРФ имени адмирала С. О. Макарова

ДИНАМИЧЕСКИЕ РЕАКЦИИ ПОДВОДНОГО ТРУБОПРОВОДА НА МОРСКИЕ ТЕЧЕНИЯ

DYNAMIC RESPONSE OF AN UNDERWATER PIPELINE ON THE SEA CURRENTS

В работе предложен аналитический метод расчета лобового сопротивления и подъемной силы, возникающие при обтекании подводного трубопровода установившимся потоком вязкой несжимаемой жидкости, индуцированным внешними источниками в заданном направлении. За основу расчета взяты 2D уравнения Навье–Стокса и первый интеграл этих уравнений.

In the work under consideration we propose an analytical method of calculation for drag and lift forces arising from the wrap of underwater pipeline by steady-state flow of a viscous incompressible fluid, induced by external sources in a given direction. Method based on 2D Navier–Stokes equations and first integrals of these equations.

Ключевые слова: трубопровод, обтекание, вязкая несжимаемая жидкость, лобовое сопротивление, подъемная сила, уравнение, интеграл.

Key words: pipeline, wrap, viscous incompressible fluid, drag, lift force, equation, integral.

1. Введение. Трубопроводный транспорт является важным звеном транспортной системы РФ. Особое значение для экономики страны имеют магистральные трубопроводы. По ним происходит транспортировка на большие расстояния и в больших объемах нефти, газа, нефтепродуктов, воды. Нередко магистральные трубопроводы прокладываются по дну моря. Примерами могут служить уже действующие и строящиеся газопроводы по дну Балтийского моря — Северный поток и по дну Черного моря — Южный поток.

Магистральный трубопровод представляет собой сложное инженерное сооружение и вместе с тем потенциально опасный объект. На стадии проектирования и при строительстве должны быть выполнены жесткие требования безопасности. Должна быть надежная конструкция и нужен строгий расчет всех основных элементов.

При конструировании необходимо учесть главные факторы внешнего воздействия. Для подводного трубопровода это в первую очередь силы воздействия водной среды на его поверхность.

Помимо гидростатического давления, необходимо учесть динамические реакции, вызванные подводными течениями. Подводные течения энергично воздействует на поверхность трубопровода, вызывая дополнительные напряжения в определенных точках конструкции. Напряжения, неравномерно распределенные по длине трубопровода, могут являться причиной изгибов и кручений. При длительной эксплуатации они приводят к усталостным деформационным изменениям. Оценить и учесть такого рода деформационные изменения — одна из важных задач.

На степень деформационных изменений влияют параметры подводного течения, которые меняются во времени. Изменения происходят и по направлению, и по интенсивности. Такие изменения носят как периодический, так и пиковый характер. Периодические изменения могут быть связаны с годичными или другими циклами (весна–осень, летние штормовые, муссонные и т. д.). Суточные изменения могут быть вызваны приливами и отливами. Кроме того, есть и другие причины возникновения подводного течения: сейш, сгон, нагонная волна и наводнение. Такие явления характерны для Балтийского моря и Финского залива. При наложении различных явлений изменения параметров подводного течения могут приобретать пиковый характер. С учетом

Выпуск 4

108

переменности параметров расчет реакции на подводные морские течения оказывается непростой задачей.

Цель настоящей работы — дать математическую модель и произвести расчет динамических реакций длинного трубопровода на подводное течение. Динамические реакции можно определить, если решена задача обтекания поверхности трубопровода потоком жидкости. Задачу обтекания предлагается решать в следующей постановке.

2. Постановка задачи. Будем рассматривать трубопровод как длинный круговой цилиндр заданного радиуса *R* и расположенный на глубине *y*₀. Считаем, что происходит безотрывное обтекание этого цилиндра внешним потоком жидкости, которую считаем вязкой и несжимаемой. Физические характеристики жидкости неизменны, *р* — плотность жидкости, *v* — кинематическая вязкость.

К рассмотрению предлагается плоская задача, так что течение считаем одинаковым во всех плоскостях, перпендикулярных оси обтекаемого цилиндра. Задачу рассмотрим в декартовых координатах. Координатные оси *OX* и *OY* направим через центр окружности, получающейся в результате сечения цилиндра перпендикулярной плоскостью. Начало координат, таким образом, находится на глубине y_0 от поверхности. Предполагается, что условия для набегающего потока задаются в некоторой точке M_0 , расположенной вне цилиндра. Будем считать, что эта точка находится на оси *OX*, причем слева от начала координат. Пусть абсцисса точки M_0 равна –*L*, где *L* представляет заданный положительный параметр.

Введем безразмерные переменные, выбрав масштабы удобным образом. Пусть U_0 есть модуль скорости в точке M_0 . Эту величину полагаем масштабом скорости. Заданную величину L масштабом длины, $\frac{U_0^2}{L}$ — масштабом ускорения, а произведение ρU_0^2 — масштабом давления.

В безразмерных переменных координаты точки M_0 определяются равенствами $x_{M_0} = -1$,

 $y_{M_0} = 0$. Контур обтекаемого тела представляется уравнением окружности $x^2 + y^2 = r^2$, где $r = \frac{R}{L}$ есть безразмерный радиус цилиндра. Поскольку точка M_0 расположена вне цилиндра, то должны выполняться неравенства 0 < R < L и 0 < r < 1.

Задачу предлагается рассматривать на основе уравнений Навье–Стокса для установившегося движения вязкой несжимаемой жидкости [1–3]. В безразмерных переменных они имеют вид

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{\partial(p+\Phi)}{\partial x} + \frac{1}{\operatorname{Re}} \cdot \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right),\tag{1}$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{\partial(p+\Phi)}{\partial y} + \frac{1}{\operatorname{Re}} \cdot \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right),\tag{2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
(3)

Для основных неизвестных использованы обозначения *u*, *v*, *p*. Где *u* и *v* представляют продольную и поперечную скорости, *p* — давление.

Re обозначает число Рейнольдса, определяемое формулой Re = $\frac{U_0 L}{v}$; Φ — потенциал внешних сил. Для рассматриваемого случая $\Phi = g(y - y_0)$, где g — безразмерное ускорение свободного падения; y_0 — глубина погружения центра цилиндра, также безразмерная.

Задача обтекания цилиндра потоком вязкой несжимаемой жидкости является одной из классических задач теоретической гидромеханики. Эта задача неоднократно рассматривалась разными авторами и в различных постановках [1–3]. Однако, несмотря на большое практическое значение, на данный момент нет аналитического решения этой задачи, удовлетворительного со всех точек зрения. Основные сложности связаны с нелинейностью уравнений (1)–(2) и с заданием граничных условий для набегающего потока. Например, известно, что для линеаризованных уравнений при граничных условиях на бесконечном удалении от обтекаемого тела возникает парадокс Даламбе-

ра. Для этого случая подъемная сила оказывается нулевой, что явно противоречит экспериментальным данным.

Чтобы получить аналитическое решение при сохранении нелинейных членов и при этом избежать парадоксов, автором предлагается ввести в постановку два уточнения.

Первое существенное уточнение состоит в следующем. Предлагается исходить не из уравнений Навье–Стокса (1)–(3) непосредственно, а из первого интеграла этих уравнений. Эти соотношения предложены автором в работах [4, с. 170; 5, с. 7–17; 6, р. 708–711]. Они получены с учетом полного сохранения всех нелинейных членов и представляют уравнения более низкого порядка относительно основных неизвестных. Вследствие этого уравнения, представляющего первый интеграл, в математическом плане есть задача более простая, чем исходные уравнения (1)–(3). Для рассматриваемого случая первый интеграл уравнений Навье–Стокса сводится к трем соотношениям:

$$p+g(y-y_0)+\frac{U^2}{2}+d=\alpha+\beta,$$
 (4)

$$u^{2} - v^{2} + \frac{2}{\operatorname{Re}} \left(-\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{\partial^{2} \Psi_{12}}{\partial x^{2}} + \frac{\partial^{2} \Psi_{12}}{\partial y^{2}} + 2(\alpha - \beta),$$
(5)

$$uv - \frac{1}{\text{Re}} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = -\frac{\partial^2 \Psi_{12}}{\partial x \partial y} \,. \tag{6}$$

Здесь использованы следующие обозначения: Ψ_{12} — новое ассоциированное неизвестное; $\alpha(y)$ и $\beta(x)$ — произвольные функции одного переменного *у* или *x* соответственно; *d* — диссипация; *U* — модуль вектора скорости. Величины *d* и *U* определяются равенствами:

$$d = -\frac{1}{2} \left(\frac{\partial^2 \Psi_{12}}{\partial x^2} + \frac{\partial^2 \Psi_{12}}{\partial y^2} \right), \tag{7}$$

$$U = \sqrt{u^2 + v^2} . \tag{8}$$

К указанным соотношениям следует добавить уравнение неразрывности (3) и граничные условия.

Граничные условия определяются двумя положениями. Первое положение общепринято при рассмотрении задач обтекания потоком вязкой жидкости. Оно состоит в том, что вдоль контура обтекаемого тела и продольная, и поперечная скорости обращаются в нуль [1–3]. Для нашего случая данное условие приводит к равенствам:

$$u|_{x^2+y^2=y^2}=0, \qquad v|_{x^2+y^2=y^2}=0.$$
 (9)

Второе положение касается задания скоростей вне обтекаемого тела. В формулировке этого граничного условия состоит второе важное уточнение, которое предлагается ввести в постановку. Условия для обтекаемого потока будем задавать в точке $M_0(-1; 0)$, которая находится на конечном расстоянии от цилиндра. Тем самым мы избавлены от необходимости рассматривать условия на бесконечности. В точке M_0 должен быть задан вектор скорости. Поскольку модуль этого вектора U_0 задает масштаб скорости, то достаточно задать лишь угол наклона. Будем считать, что тангенс угла наклона этого вектора задан и равен величине $k = tg\theta$, где θ — начальный угол атаки. Так что в качестве второго граничного условия потребуем выполнимости равенства

$$\frac{v(-1; 0)}{u(-1; 0)} = k,$$
(10)

где *k* — наперед заданная постоянная величина.

Таким образом, поставленная задача сводится к решению дифференциальных уравнений (3)–(6) относительно неизвестных u, v, p, Ψ_{12} при граничных условиях (9)–(10). Предлагаемая постановка требует задания трех исходных параметров: числа Рейнольдса Re, безразмерного радиуса цилиндра r, а также числа k, определяющего направление вектора скорости в точке-источнике.

ВЕСТНИК ПОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВА

3. Решение определяющих уравнений. Решение задачи естественным образом разбивается на три основных этапа. Вначале нужно разрешить уравнения (3), (5)–(6) при граничных условиях (9)–(10). В результате будут найдены неизвестные u, v, Ψ_{12} . На втором этапе по соотношению (4) с учетом (7) нужно найти функцию давления p. И на последнем этапе нужно проинтегрировать функцию p(x; y) вдоль контура обтекаемого тела. В результате искомые динамические реакции потока на обтекаемое тело будут определены.

Перейдем к первому этапу решения задачи. Введем функцию тока, обозначив ее как Ψ_{11} . В результате для скоростей справедливо представление [1–3]:

$$u = \frac{\partial \Psi_{11}}{\partial y}, \qquad v = -\frac{\partial \Psi_{11}}{\partial x}.$$
 (11)

Для решения уравнений (3), (5)–(6) будем использовать методику, примененную автором в работе [7, р. 308–314] для исследования решений задачи Пуазейля. Разложим функции Ψ_{11} и Ψ_{12} по целым степеням *x* и *y*:

$$\Psi_{11} = \sum_{n=0}^{N} \sum_{m=0}^{N-n} a_{nm} x^n y^m , \quad \Psi_{12} = \sum_{n=0}^{N} \sum_{m=0}^{N-n} b_{nm} x^n y^m , \quad (12)$$

где a_{nm}, b_{nm} — некоторые коэффициенты; N — номер приближения.

Коэффициенты a_{nm} следует выбрать так, чтобы изначально удовлетворить уравнению неразрывности (3) и граничным условиям (9). Вычисления показывают, что это возможно, только начиная с шестого приближения N = 6. В рамках этого приближения u, v определяются выражениями:

$$u = \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{01}r^2 + a_{11}r^2x + 2a_{02}r^2y - a_{01}x^2 - 4a_{10}xy - 5a_{01}y^2 - a_{11}x^3 + x^2y \cdot 2(a_{22}r^2 + a_{02}) - 5a_{11}xy^2 + y^3 \cdot 2(a_{22}r^2 - a_{02} + 2a_{20})\right],$$
(13)
$$v = -\frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{20}r^2x + a_{11}r^2y - 5a_{10}x^2 - 4a_{01}xy - a_{10}y^2 + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{10}r^2x + a_{11}r^2y - 5a_{10}r^2x - 4a_{10}r^2y - a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2 + 2a_{10}r^2y + a_{10}r^2y - a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2y + a_{10}r^2y + a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2y + a_{10}r^2y + a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2y + a_{10}r^2y + a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2y + a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2 - y^2\right) \cdot \left[a_{10}r^2y + x^2\right] + \frac{1}{r^4} \cdot \left(r^2 - x^2\right) + \frac{$$

$$x^{3} \cdot 2(a_{22}r^{2} - a_{20} + 2a_{02}) - 5a_{11}x^{2}y + xy^{2} \cdot 2(a_{22}r^{2} + a_{20}) - a_{11}y^{3}],$$
(14)

где $a_{01}, a_{10}, a_{11}, a_{02}, a_{20}, a_{22}$ — шесть пока неопределенных коэффициентов. Их следует определить так, чтобы уравнения (5)–(6) были бы удовлетворены с точностью до шестых степеней $x^n y^m$, где $0 \le n + m \le 6$, и чтобы при этом выполнялось граничное условие (10).

Для нахождения коэффициентов a_{nm} осуществим следующие действия. Подставим выражения (13)–(14) и второе из (12) в уравнения (5)–(6) и приравняем коэффициенты при одинаковых степенях $x^n y^m$ в обеих частях равенств. В результате получаются уравнения, связывающие b_{nm} и искомые коэффициенты a_{nm} , причем относительно b_{nm} уравнения линейны. Данные уравнения можно разрешить относительно b_{nm} , только если выполнены определенные условия совместности. Эти условия сводятся к пяти равенствам:

$$a_{22} = 0, \quad a_{20} = -\frac{\operatorname{Re}}{24}a_{10}a_{01}, \quad a_{02} = \frac{\operatorname{Re}}{24}a_{10}a_{01}, \quad a_{11} = \frac{\operatorname{Re}}{24}\left(a_{10}^2 - a_{01}^2\right), \quad a_{10}^2 + a_{01}^2 - \frac{1}{r^2}\left(\frac{24}{\operatorname{Re}}\right)^2 = 0.$$
(15)

Последние четыре из равенств (15) заведомо будут выполнены, если положить

$$a_{10} = \frac{\text{Re}}{r24}c_0,\tag{16}$$

где c_0 есть некоторая вещественная величина, удовлетворяющая ограничению $|c_0|$ " 1.

С учетом (16) искомые коэффициенты определятся формулами:

Выпуск 4

110

$$a_{01} = \pm \frac{24}{r \operatorname{Re}} \sqrt{1 - c_0^2}, \quad a_{11} = \frac{24}{r^2 \operatorname{Re}} \left(2c_0^2 - 1 \right), \quad a_{02} = \pm \frac{24}{r^2 \operatorname{Re}} c_0 \sqrt{1 - c_0^2}, \quad a_{20} = \mp \frac{24}{r^2 \operatorname{Re}} c_0 \sqrt{1 - c_0^2}.$$
(17)

Кроме того, определяются все коэффициенты b_{nm} при $0 \le n + m \le 6$ как результат решения системы линейных уравнений.

В выражениях (17) для a_{nm} и во всех выражениях для b_{nm} фигурирует одна пока неопределенная величина c_0 . Ее значение находим из граничного условия (10) следующим образом. Составляем выражения (14)–(15) для u, v при x = -1, y = 0. Вычисляем $\frac{v(-1; 0)}{u(-1; 0)}$ и приравниваем его к заданной величине k. Уходя от знаменателя, получаем равенство, равносильное условию (10):

$$-a_{10}r^{2} + 2a_{20}r^{2} + 5a_{10} - 2(a_{20} - 2a_{02}) = k(a_{01}r^{2} - a_{11}r^{2} - a_{01} + a_{11}).$$
(18)

Далее преобразуем (18) с учетом (17). Избавляясь от радикалов путем возведения в квадрат, приходим к уравнению четвертой степени относительно c_0 , которое можно представить в виде

$$\varsigma_{1}c_{0}^{4} + \varsigma_{2}c_{0}^{3} + \varsigma_{3}c_{0}^{2} + \varsigma_{4}c_{0} + \varsigma_{5} = 0.$$
⁽¹⁹⁾

Коэффициенты *с*, определены через исходные параметры *k* и *r* по формулам:

$$\varsigma_{1} = 4k^{2}(1-r^{2})^{2} + 4(3-r^{2})^{2}, \quad \varsigma_{2} = -8kr(1-r^{2}), \quad \varsigma_{4} = -2kr(1-r^{2})^{2},$$

$$\varsigma_{3} = r^{2}(r^{2}-5)^{2} - 4(3-r^{2})^{2} + k^{2}(1-r^{2})^{2}(r^{2}-4), \quad \varsigma_{5} = k^{2}(1-r^{2})^{3}.$$
(20)

В результате, если из уравнения (19) найдено c_0 , то первый этап решения можно считать законченным, так как неизвестные u, v, Ψ_{12} будут полностью определены.

Второй этап решения преследует целью нахождение неизвестного *p*. Обратимся к уравнению (4), выбрав значения аддитивных функций. Положим, для простоты $\alpha(y) = 0$, $\beta(x) = 0$. С учетом найденных выражений для b_{nm} , а также с учетом выражений (7) и (4) получаем

$$p = -g(y - y_{0}) + \left(2b_{20} - a_{10}^{2} - \frac{2a_{11}}{Re}\right) - x\left(2a_{20}a_{10} + a_{11}a_{01} + \frac{16a_{01}}{Rer^{2}}\right) + y\left(2a_{20}a_{01} - a_{11}a_{10} + \frac{16a_{10}}{Rer^{2}}\right) + x^{2}\left(-2a_{20}^{2} - \frac{a_{11}^{2}}{2} + \frac{2}{r^{2}}\left(a_{01}^{2} - a_{10}^{2} - \frac{6a_{11}}{Re}\right)\right) - \frac{8xy}{r^{2}}\left(a_{01}a_{10} - \frac{a_{20}}{Re}\right) + y^{2}\left(\frac{2a_{10}^{2}}{r^{2}} - \frac{2a_{01}^{2}}{r^{2}} - 2a_{20}^{2} - \frac{a_{11}^{2}}{2} + \frac{12a_{11}}{Rer^{2}}\right) + \frac{4x^{3}}{r^{2}}\left(\frac{a_{20}a_{10}}{3} + a_{11}a_{01} + \frac{2a_{01}}{Rer^{2}}\right) - \frac{2x^{2}y}{r^{2}}\left(8a_{20}a_{01} + a_{11}a_{10} + \frac{12a_{10}}{Rer^{2}}\right) + \frac{2xy^{2}}{r^{2}}\left(8a_{20}a_{10} - a_{11}a_{01} + \frac{12a_{01}}{Rer^{2}}\right) + \frac{4y^{3}}{r^{2}}\left(a_{11}a_{10} - \frac{a_{20}a_{01}}{3} - \frac{2a_{10}}{Rer^{2}}\right) + \frac{x^{4}}{r^{4}}\left(7a_{10}^{2} - 3a_{01}^{2} + 2r^{2}a_{11}^{2} + 4a_{20}^{2} + \frac{8a_{11}}{Re}\right) + \frac{8x^{3}y}{r^{4}}\left(\frac{7}{3}a_{10}a_{01} - r^{2}a_{20}a_{11} - \frac{8a_{20}}{Re}\right) + \frac{4x^{2}y^{2}}{r^{4}}\left(a_{01}^{2} - 3a_{10}^{2} + 4r^{2}a_{20}^{2} + 4r^{2}a_{20}^{2} + 2r^{2}a_{11}^{2} - \frac{8a_{11}}{Re}\right).$$
 (21)

Первое слагаемое в правой части (21) соответствует вкладу от гидростатического давления. Во второй группе членов фигурирует произвольная постоянная b_{20} . Эту величину выбираем так, чтобы аддитивная постоянная давления обратилась бы в нуль. Для этого потребуем выполнимости равенства $2b_{20} - a_{10}^2 - \frac{2a_{11}}{Re} = 0$. Все остальные члены в правой части — результат воздействия набегающего потока. Они определяются коэффициентами a_{nm} , которые, в свою очередь, определяются через c_0 согласно (17).

Для определения динамических реакций потока на обтекаемое тело переходим к третьему этапу решения. Для этого воспользуемся известной формулой [1–2]:

$$\vec{F_R} = -\oint \vec{pnds}, \qquad (22)$$

где $\overrightarrow{F_R}$ — искомая сила гидродинамического воздействия; \overrightarrow{n} — вектор внешней нормали к контуру.

Контуром обтекаемого тела является окружность с уравнением $x^2 + y^2 = r^2$. Для точек контура выполнены равенства $x = r \cos \varphi$, $y = r \sin \varphi$, $ds = rd\varphi$, где $0 \le \varphi < 2\pi$. В качестве вектора внешней нормали можно взять вектор $\vec{n} = \vec{i} \cos \varphi + \vec{j} \sin \varphi$.

Тогда проекции $\overrightarrow{F_R}$ на координатные оси определяются, как

$$F_x = -\int_0^{2\pi} p(r\cos\varphi; r\sin\varphi) \cdot r\cos\varphi d\varphi, \quad F_y = -\int_0^{2\pi} p(r\cos\varphi; r\sin\varphi) \cdot r\sin\varphi d\varphi.$$
(23)

Величину F_x часто называют лобовым сопротивлением, а F_y — подъемной силой. Чтобы найти эти величины, нужно в выражении (21) для p(x; y) подставить $x = r\cos\varphi$, $y = r\sin\varphi$ и вычислить два определенных интеграла по $d\varphi$ согласно (23). При вычислении нужно учесть закономерности, которые следуют из анализа выражения (21). Из 15 членов в правой части (21) ненулевой вклад в (23) дают только по 4 члена. Для F_x членами, которые вносят ненулевой вклад, являются $-g(y-y_0)$, а также 3 члена со степенями x, x^3, xy^2 . Для F_y такими членами, кроме $-g(y-y_0)$, будут также члены, содержащие степени y, y^3 и x^2y . Для обоснования указанных закономерностей следует принять во внимание известные соотношения:

$$\int_{0}^{2\pi} \cos^{2} \varphi d\varphi = \int_{0}^{2\pi} \sin^{2} \varphi d\varphi = \pi,$$
$$\int_{0}^{2\pi} \cos^{4} \varphi d\varphi = \int_{0}^{2\pi} \sin^{4} \varphi d\varphi = \frac{3\pi}{4}, \qquad \int_{0}^{2\pi} \sin^{2} \varphi \cos^{2} \varphi d\varphi = \frac{\pi}{4},$$
$$\int_{0}^{2\pi} \sin^{n} \varphi \cos^{m} \varphi d\varphi = 0 \text{ при } n + m = 2k + 1.$$

В результате в выражении для F_x остаются только 3 ненулевых слагаемых, а в выражении для F_y — 4. Вычисления приводят к следующему результату:

$$F_{x} = \pi r^{2} \left(-3a_{20}a_{10} - \frac{3}{2}a_{11}a_{01} + \frac{4a_{01}}{r^{2}\operatorname{Re}} \right),$$

$$F_{y} = \pi r^{2} \left(g + 3a_{20}a_{01} - \frac{3}{2}a_{11}a_{10} - \frac{4a_{10}}{r^{2}\operatorname{Re}} \right).$$
(24)

Формулы (24) еще более упрощаются, если воспользоваться выражениями (16)–(17) для a_{nm} . После преобразований приходим к выражениям:

$$F_x = \frac{960\pi}{r\,\mathrm{Re}^2} \cdot \sqrt{1 - c_0^2} \,, \qquad F_y = g\pi r^2 - \frac{960\pi}{r\,\mathrm{Re}^2} \cdot c_0 \,, \tag{25}$$

где c_0 есть корень уравнения (19).

Выпуск 4 115 Таким образом, формулы для динамических реакций получены. Формулы (25) являются новыми.

4. Обсуждение результатов. Произведем краткий анализ формул (25). Во-первых, ясно, что за исключением особых случаев F_x и F_y отличны от нуля. Так что и лобовое сопротивление, и подъемная сила ненулевые и парадокса типа Даламбера не возникает.

Рассмотрим вторую из формул (25), определяющую выражение для F_y . В правой части имеем два слагаемых. Первое слагаемое $g\pi r^2$ заведомо положительно. С учетом специфики плоской задачи это слагаемое представляет вклад от архимедовой силы. Величина $g\pi r^2$ положительна, так что имеем подтверждение известного факта — архимедова сила направлена вверх. Данное слагаемое никак не связано с силами вязкости и с набегающим потоком и определяется лишь геометрическими размерами обтекаемого тела и ускорением свободного падения. В противоположность этому второе слагаемое для F_y зависит и от числа Рейнольдса, и от величины c_0 . Величина c_0 является корнем уравнения (19) и ее значение зависит от коэффициентов этого уравнения, определяемых формулами (20). Поскольку в правых частях формул (20) фигурируют k и r, то от этих же величин зависят и c_0 , и F_y . Таким образом, второе слагаемое для F_y явно зависит не только от r, но также и от Re и k. Это слагаемое есть результат гидродинамического воздействия набегающего потока. Знак этого слагаемого может быть как положительным, так и отрицательным в зависимости от параметров. Не исключена также возможность, что это

слагаемое будет равно нулю. В частности эта возможность реализуется, если $c_0 = 0$ является корнем уравнения (19).

Рассмотрим первую из формул (25), определяющую лобовое сопротивление F_x . Величина F_x есть результат действия набегающего потока и она определяется только одним слагаемым, которое заведомо положительно. Величина F_x явно зависит от Re, r и c_0 . Зависимость от c_0 приводит также и к зависимости от k и L.

Как следует из формул (25), общая сила гидродинамического воздействия $\overrightarrow{F_R}$ может быть разложена на две составляющие:

$$\overrightarrow{F_R} = \overrightarrow{F_A} + \overrightarrow{F_C},\tag{26}$$

где $\overrightarrow{F_A}$ есть архимедова сила, а $\overrightarrow{F_C}$ — сила действия набегающего потока (от *англ.* current — течение).

Обе эти силы приложены к центру цилиндра, однако их направления различны. $\overrightarrow{F_A}$ направлена вертикально вверх, а направление $\overrightarrow{F_C}$ определяется углом 9, для которого

$$tg\vartheta = \frac{-c_0}{\sqrt{1-c_0^2}}.$$
(27)

Из формулы (27) ясно, что угол ϑ определяется величиной c_0 , а значит, зависит от начального угла атаки θ посредством параметра k и зависит также от R и L.

Чтобы оценить относительные вклады сил $\overrightarrow{F_A}$ и $\overrightarrow{F_C}$, интересно сравнить их модули. Из формул (25) следует, что отношение модулей определяется как

$$\frac{\overline{F_C}}{\overline{F_A}} = \frac{960 \cdot v^2}{GR^3},\tag{28}$$

где G и R есть размерные величины, ускорение свободного падения и радиус цилиндра соответственно.

Вычисления по формуле (28) показывают, что для воды при температуре 1–10 °С это отношение имеет порядок 10^{-5} , так что архимедова сила значительно превосходит по модулю силу $\overrightarrow{F_C}$. Следует, однако, учесть следующие обстоятельства. Архимедова сила в значительной степени компенсируется силой тяжести, направленной вертикально вниз. Если архимедова сила и сила тяжести — силы постоянного действия и по направлению, и по модулю, то направление силы $\overrightarrow{F_C}$ зависит от величин k и L, которые должны задаваться как параметры. Вдоль длины трубопровода эти величины могут существенно изменяться. Значит, и направление силы $\overrightarrow{F_C}$ для различных сечений трубопровода также будет разным. Такие изменения приводят к кручениям и изгибам.

5. Выводы. Таким образом, решение задачи обтекания цилиндра в уточненной обстановке позволило вычислить гидродинамическое воздействие подводного трубопровода на морские течения. В результате получены новые формулы для подъемной силы и лобового сопротивления. Важно, что ни парадокса Стокса, ни парадокса Даламбера при этом не возникает. Полученные формулы вводят в рассмотрение два новых дополнительных параметра — k и L. Эти параметры могут быть определены в результате измерений. Таким образом, для длинного трубопровода по-является возможность аналитического расчета изгибов, кручений и деформационных изменений вследствие подводных течений.

Предлагаемая методика может быть применена и для расчета динамических реакций на тело, лишь частично погруженное в жидкость, например на днище корабля. Для этого достаточно в формулах (23) интегрирование распространить лишь на ту часть контура, которая погружена в жидкость. Например, при погружении цилиндра в жидкость наполовину достаточно в (23) интегрировать в пределах от π до 2π . Изменения в этом случае произойдут лишь в коэффициентах результирующих формул.

Выпуск 4

114

Список литературы

1. *Кочин Н. Е.* Теоретическая гидромеханика / Н. Е. Кочин, И. А. Кибель, Н. В. Розе. — М.: Изд-во физ.-мат. лит., 1963. — Ч. 2. — 727 с.

2. Лойцянский Л. Г. Механика жидкости и газа / Л. Г. Лойцянский. — М.: Наука, 1987. — 833 с.

3. Валландер С. В. Лекции по гидроаэромеханике / С. В. Валландер. — Л.: Изд-во ЛГУ, 1978. — 294 с.

4. *Коптев А. В.* Проблемы и перспективы решения уравнений Навье–Стокса / А. В. Коптев // Математическая физика и ее приложения: материалы III Междунар. конф. / Математический ин-т им. В. А. Стеклова РАН. — 2012.

5. Коптев А. В. Первый интеграл и пути дальнейшего интегрирования уравнений Навье– Стокса / А. В. Коптев // Известия РГПУ им. А. И. Герцена. Сер. «Естественные и точные науки». — 2012. — № 147.

6. *Koptev A. V.* A new approach to resolution of the Navier–Stokes equations / A. V. Koptev // European Sciences and Technology. — Munich, Germany, 2013. — Vol. 2.

7. Koptev A. V. Nonlinear effects in Poiseulle problem / A. V. Koptev // J. of Siberian Federal University. Mathematics & Physics. — 2013. — Iss. 6 (3).