

DOI: 10.21821/2309-5180-2018-10-2-420-429

COMPARATIVE ANALYSIS OF THE PULSE WIDTH MODULATION METHODS

I. V. Belousov, V. F. Samosejko, L. M. Brovtsinova

Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russian Federation

Methods of sinusoidal and space vector pulse-width modulation are considered. The method of space vector pulse-width modulation is described in a form that allows comparing it with the method of sinusoidal pulse-width modulation. The formalization of the description of the sinusoidal pulse-width modulation method is presented and its shortcomings are shown. It is shown that the modified method of sinusoidal pulse-width modulation eliminates the shortcomings of the sinusoidal pulse-width modulation method by introducing a pre-modulation function. The obtained expression of the pre-modulation function excludes the emergence of the voltage overmodulation on a three-phase load, when the amplitude coefficient of the modulating function of the voltage varies from zero to unity. When describing the methods of pulse-width modulation, expressions are obtained for the commutation functions of half-bridges of a three-phase bridge, which have a simple form and allow a simple software implementation of it.

It is shown that the method of space vector pulse-width modulation, which is considered the best in the literature, is essentially identical to the modified method of sinusoidal pulse-width modulation. The difficulties of the process of comparing the methods of space vector and sinusoidal pulse-width modulation are explained by the use of various mathematical apparatus of their description, an attempt to overcome them has been undertaken in this paper.

Diversity of pre-modulation functions defines the set of possible methods for implementation pulse-width modulation. The pre-modulation function is a free variable that allows optimization of methods in pulse-width modulation. The parameters, characterizing the position of the pulses in the pulse-width modulation interval, are also free variables. The presence of free variables allows us to formulate and to solve the problem of optimal pulse-width modulation, which ultimately will reduce energy losses in propulsion motors and their vibration.

Keywords: pulse width modulation, sinusoidal PWM, space vector PWM, overmodulation, premodulation function; modulation quality, inverter.

For citation:

Belousov, Igor V., Veniamin F. Samosejko, and Ludmila M. Brovtsinova. "Comparative analysis of the pulse width modulation methods." *Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova* 10.2 (2018): 420–429. DOI: 10.21821/2309-5180-2018-10-2-420-429.

УДК:621.341.572

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ

И. В. Белоусов, В. Ф. Самосейко, Л. М. Бровцинова

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова», Санкт-Петербург, Российская Федерация

Рассмотрены методы классической и векторной широтно-импульсной модуляции. Метод векторной широтно-импульсной модуляции изложен в виде, позволяющем сравнивать его с методом классической широтно-импульсной модуляции. Представлена формализация описания метода классической широтно-импульсной модуляции и показаны его недостатки. Показано, что модифицированный метод классической широтно-импульсной модуляции устраняет недостатки классического метода путем введения функции предмодуляции. Полученное выражение функции предмодуляции исключает появление режима перемодуляции напряжения на трехфазной нагрузке при изменении коэффициента амплитуды модулирующей функции напряжения в диапазоне от нуля до единицы. При описании методов широтно-импульсной модуляции получены выражения для коммутационных функций полумостов трехфазного электронно-ключевого моста, которые имеют достаточно простой вид и позволяют выполнять достаточно простую его программную реализацию.

Показано, что метод векторной широтно-импульсной модуляции, считающийся в литературе наилучшим, является, по сути, тождественным модифицированному методу классической широтно-импульсной модуляции. Трудности процесса сравнения методов векторной и классической широтно-импульсной модуляции объясняются применением различного математического аппарата их описания, попытка преодоления которых предпринята в данной работе.

Многообразие функций предмодуляции определяет множество возможных методов реализации ииротно-импульсной модуляции. Функция предмодуляции является свободной переменной, позволяющей выполнять оптимизацию методов при широтно-импульсной модуляции. Параметры, характеризующие положение импульсов на интервале широтно-импульсной модуляции, также являются свободными переменными. Наличие свободных переменных позволяет сформулировать и решить задачу оптимальной широтно-импульсной модуляции, что, в конечном итоге, позволит уменьшить потери энергии в гребных электродвигателях и их вибрацию.

Ключевые слова: широтно-импульсная модуляция, классический метод, векторный метод, перемодуляция, функция предмодуляции, качество модуляции.

Для цитирования:

Белоусов И. В. Сравнительный анализ методов широтно-импульсной модуляции / И. В. Белоусов, В. Ф. Самосейко, Л. М. Бровцинова // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2018. — Т. 10. — № 2. — С. 420–429. DOI: 10.21821/2309-5180-2018-10-2-420-429.

Введение (Introduction)

Управление потоками электрической энергии с развитием силовой электроники посредством широтно-импульсной модуляции (ШИМ) нашло широкое применение в различных областях техники и, в частности, используется для управления гребными электродвигателями. Качество ШИМ существенно зависит от частоты следования импульсов. Однако увеличение частоты модуляции ведет к возрастанию динамических потерь в электронных ключах. Большие частоты модуляции применяются в электрических преобразователях меньшей мощности. Мощности преобразователей электрической энергии, реализуемых на полностью управляемых электронных ключах, неуклонно растут. Так, мощность единичных преобразователей частоты, используемых в системах электродвижения судов, в настоящее время достигает 5 МВт и более. Повышение качества модуляции напряжения на нагрузке ведет к снижению потерь мощности и уменьшению виброшумовых характеристик электроприводов, поэтому повышение качества модуляции является актуальной задачей.

Проблеме качества ШИМ с момента начала ее использования в силовой преобразовательной технике уделялось большое внимание. Наибольшее распространение получили два метода: метод классической ШИМ и метод векторной ШИМ. Метод классической ШИМ основан на сравнении желаемой функции напряжения (модулирующей функции) с периодической пилообразной функцией [1]. Классический метод был усовершенствован путем введения *функции предмодуляции*. Усовершенствованный метод классической ШИМ позволил поднять коэффициент использования напряжения источника питании [2]. Другим подходом к формированию модулированного напряжения является метод векторной ШИМ [3]. Существуют различные модификации этих методов [4] – [6]. Метод векторный ШИМ нашел широкое применение в силовой преобразовательной технике [4], [7] – [9].

Сравнению методов векторной и классической ШИМ посвящено большое количество работ [10] – [14], основанных на компьютерном моделировании. Ввиду импульсного характера функций, моделирование требует существенных затрат машинного времени. Для их моделирования предложены специальные спектральные критерии сравнения [14]. В литературе преобладает мнение о том, что метод векторной ШИМ лучше модифицированного классического метода, использующего функцию предмодуляции [8], [11] – [13]. Получить окончательный вывод о том, какой метод лучше, путем компьютерного моделирования невозможно. В работе [6] отмечается, что алгоритм переключения, который обычно называют *векторной ШИМ*, может быть получен при применении систем управления, основанных на иных принципах [15] – [17], причем пока нет доказательства, что векторный принцип построения микропроцессорной системы управления является наилуч-

шим. В данной статье показано, что векторной ШИМ (SVPWM) полностью идентичен методу классической ШИМ с определенной функцией предмодуляции. Многообразие возможных методов ШИМ полностью исчерпывается различными видами функций предмодуляции.

Методы и материалы (Methods and Materials)

Наибольшее практическое применение находит трехфазный электронно-ключевой мост, состоящий из трех верхних VH_A , VH_B , VH_C и трех нижних VL_A , VL_B , VL_C ключей. Общий потенциал нижних ключей и источника питания принимается равным нулю. Полагается, что включен либо верхний, либо нижний ключ полумоста. Общий потенциал верхних ключей и источника питания принимается равным напряжению источника питания U_d . Трехфазная нагрузка представляет собой *LR*-фильтр низкой частоты.

Рис. 1. Мостовая схема трехфазной модуляции

Под ШИМ в данной работе понимается процесс аппроксимации импульсами напряжения желаемого гладкого напряжения, необходимого для управления электродвигателями. Импульсная функция периодическая булева функция, принимающая значения «0» или «1».

Модулированная функция — импульсная функция, получаемая в процессе модуляции. Модулирующая функция — гладкая непрерывная функция, к которой должна быть приближена импульсная функция в процессе модуляции. Под модулированной функцией напряжения понимается отношение модулированного напряжения к напряжению источника питания U_{d} . Под модулирующей функцией напряжения понимается отношение модулирующего напряжения к напряжению источника питания U_{d} .

Коммутационная функция — это импульсная функция, единица которой соответствует включенному состоянию ключа, ноль — выключенному. Под потенциалом полумоста X = A, *B*, *C* понимается потенциал его средней точки. Отношение потенциалов мостов к напряжению источника питания — это модулированная функция напряжения. Модулирующие фазные функции напряжения на нагрузке задаются вектором $\mathbf{g}_{s} = [g_{A}, g_{B}, g_{C}]^{T}$. Модулирующие функции потенциалов полумостов задаются вектором $\gamma_{s} = [\gamma_{A}, \gamma_{B}, \gamma_{C}]^{T}$. Вводится понятие *нулевой потенциальной функции*: $\gamma_{0} = (\gamma_{A} + \gamma_{B} + \gamma_{C})/3$. Произведение $\gamma_{0}U_{d}$ — потенциал нулевой точки нагрузки, соединенной в звезду. Модулирующие фазные функции напряжения связаны с модулирующими функциями потенциалов полумостов очевидным соотношением: $\mathbf{g}_{s} = \gamma_{s} - \gamma_{0} \cdot \mathbf{1}$, где $\mathbf{1}$ — единичный вектор.

Метод векторной ШИМ. Алгоритм векторной ШИМ предложен для управления трехфазным электронно-ключевым мостом, состоящим из полумостов *A*, *B*, *C* [3]. Для того чтобы показать, что метод векторной ШИМ идентичен методу классической ШИМ с функцией предмодуляции, необходимо видоизменить описание метода векторной ШИМ [3]. Состояния ключей полумостов будем обозначать булевым вектором **S** = $[\chi_A, \chi_B, \chi_C]$, где χ_A, χ_B, χ_C — булевы переменные, принимающие значения «0» или «1». Переменные $\chi_A, \chi_B, \chi_C = 1$, если включен верхний ключ полумоста *A*, *B*, *C*. Переменные $\chi_A, \chi_B, \chi_C = 0$, если включен нижний ключ полумоста *A*, *B*, *C*. Так, *S*₁ = [1,0,0] означа-

ет, что включен верхний ключ полумоста *A* и включены нижние ключи полумостов *B*, *C*. В трехфазном мосте можно выделить восемь состояний:

$$\begin{split} \mathbf{S}_1 &= [1,0,0]; \ \mathbf{S}_2 &= [1,1,0]; \ \mathbf{S}_3 &= [0,1,0]; \ \mathbf{S}_4 &= [0,1,1]; \ \mathbf{S}_5 &= [0,0,1]; \ \mathbf{S}_6 &= [1,0,1]; \\ \mathbf{S}_7 &= [1,1,1]; \ \mathbf{S}_8 &= [0,0,0]. \end{split}$$

Векторы $S_1 - S_6$ называются *базовыми*, а S_7 и S_8 — *нулевыми*. Нулевые векторы обеспечивают нулевое значение напряжения на трехфазной нагрузке.

Модулированное напряжение на нагрузке формируется за счет переходов из состояния в состояние. Состояния нумеруются k = 1, ..., 8. Наиболее распространенная последовательность переходов на интервале модуляции

или

$$\rightarrow \mathbf{S}_{7} \rightarrow \mathbf{S}_{k} \rightarrow \mathbf{S}_{k+1} \rightarrow \mathbf{S}_{8} \rightarrow \mathbf{S}_{k+1} \rightarrow \mathbf{S}_{k} \rightarrow \mathbf{S}_{7} \rightarrow,$$

где k = 1, 2, ..., 6 — номера базовых состояний.

Нулевые состояния S_7 и S_8 соответствуют номерам k = 7 и k = 8. Заметим, что в течение периода модуляции происходит по одной коммутации каждого полумоста. Будем обозначать относительное время пребывания электронно-ключевого моста в состояниях S_k , S_{k+1} , $S_0 = S_7$ или S_8 , соответственно, τ_1 , τ_2 , τ_3 . За базовое значение времени принят период модуляции.

Распределение времени пребывания электронно-ключевой цепи в состояниях S_k , S_{k+1} , S_0 на интервале ШИМ может быть различным. Однако наиболее часто распределение импульсов на интервале ШИМ центрально симметричное. Распределение времени пребывания электронно-ключевой цепи в состояниях S_k , S_{k+1} , S_0 при центрально симметричном расположении импульсов приведено в табл. 1.

Таблица 1

S ₈	\mathbf{S}_k	\mathbf{S}_{k+1}	S ₇	\mathbf{S}_{k+1}	\mathbf{S}_k	\mathbf{S}_8
$\tau_3/4$	$\tau_1/2$	$\tau_2/2$	$\tau_3/2$	$\tau_2/2$	$\tau_1/2$	$\tau_3/4$

Распределение времени пребывания электронно-ключевой цепи в состояниях S₁, S₁₊₁, S₀

Для определения значений τ_1 , τ_2 , τ_3 выполним преобразование вектора состояния S_k в новый вектор на комплексной плоскости:

$$\mathbf{V}_{k} = \frac{1}{2} \cdot \mathbf{e} \cdot \mathbf{S}_{k}^{T}, \tag{1}$$

где $\mathbf{e} = [1, \exp(-j \cdot \rho), \exp(j \cdot \rho)]; j = \sqrt{-1}; \rho = 2\pi/3; k = 1, ..., 8.$

Базовые векторы на комплексной плоскости

$$\mathbf{V}_{k} = \exp(j \cdot (\boldsymbol{\varphi}_{k})), \qquad (2)$$

где $k = 1, 2, ..., 6; \varphi_k = (k - 1) \cdot \rho/2$ — аргумент базового вектора V_k .

Относительным фазным напряжениям на нагрузке \mathbf{g}_s ставится в соответствие вектор на комплексной плоскости:

$$\mathbf{V}_{s} = \mathbf{e} \cdot \mathbf{g}_{s}^{T} = V_{s} \cdot \exp(j \cdot \mathbf{\varphi}_{s}), \tag{3}$$

где ϕ_s — аргумент вектора V_s .

Номер состояния k вычисляется из уравнения

$$1 = 1(\varphi_s - \varphi_k) \cdot 1(\varphi_k - \varphi_s),$$

где 1(*x*) — единичная функция.

Иллюстрация положений базовых векторов состояний трехфазного моста и вектора фазных напряжений на комплексной плоскости приведена на рис. 2.

Рис. 2. Векторы базовых состояний трехфазного моста

Относительное время пребывания электронно-ключевого моста в состояниях S_k , S_{k+1} находится из уравнения

$$\mathbf{V}_{S} = \boldsymbol{\tau}_{1} \cdot \mathbf{V}_{k} + \boldsymbol{\tau}_{2} \cdot \mathbf{V}_{k+1}. \tag{4}$$

Длительность пребывания электронно-ключевого моста в нулевых состояниях S_0 вычисляется по формуле $\tau_3 = 1 - \tau_1 - \tau_2$.

Каждому из сочетаний базовых векторов состояний S_k , S_{k+1} соответствует совокупность неравенств модулирующих функций напряжений: $g_A > g_B > g_C$; $g_B > g_C > g_A > g_C > g_A$; $g_C > g_B > g_A$; $g_C > g_B > g_C$; $g_B > g_C > g_A$; $g_C > g_B > g_A$; $g_C > g_B > g_A$; $g_C > g_B > g_C > g_A$; $g_C > g_A > g_C > g_B > g_A$; $g_C > g_A > g_C > g_B > g_A$; $g_C > g_A > g_C > g_B > g_A$; $g_C > g_A > g_C > g_A$; $g_C > g_B > g_C > g_A$; $g_C > g_A > g_C > g_A$; $g_C > g_A$; $g_$

Коэффициенты заполнения интервала ШИМ полумостов являются модулирующими функциями потенциалов полумостов γ_A , γ_B , γ_C . Соответствие модулирующих функций потенциалов полумостов и относительной длительности пребывания электронно-ключевого моста τ_1 , τ_2 , τ_3 в состояниях с номерами *k* приведены в табл. 2.

Таблица 2

Состояние		τ_1	τ2	τ3	γ_A	γ_B	γ_{C}	γ _o
$\mathbf{S}_{1}, \mathbf{S}_{2}$	$g_A > g_B > g_C$	$g_{\scriptscriptstyle AB}$	$g_{\scriptscriptstyle BC}$	$1 + g_{CA}$	$\tau_1 + \tau_2 + \tau_3/2$	$\tau_{2}^{+}\tau_{3}^{/}2$	$\tau_{3}^{/2}$	$(1 + g_B)/2$
S ₂ , S ₃	$g_B > g_A > g_C$	$-g_{CA}$	$-g_{AB}$	$1-g_{BC}$	$\tau_{1}^{+} \tau_{3}^{/} / 2$	$\tau_1 + \tau_2 + \tau_3/2$	$\tau_{3}/2$	$(1 - g_A)/2$
S ₃ , S ₄	$g_B > g_C > g_A$	$g_{\scriptscriptstyle BC}$	$g_{\scriptscriptstyle C\!A}$	$1+g_{AB}$	$\tau_{_{3}}/2$	$\tau_1 + \tau_2 + \tau_3/2$	$\tau_{2}^{+} \tau_{3}^{/2}$	$(1 + g_c)/2$
S ₄ , S ₅	$g_C^{>}g_B^{>}g_A$	$-g_{AB}$	$-g_{BC}$	$1-g_{BC}$	$\tau_{_{3}}/2$	$\tau_1 + \tau_3 / 2$	$\tau_1 + \tau_2 + \tau_3/2$	$(1 - g_B)/2$
S ₅ , S ₆	$g_C > g_A > g_B$	$g_{\scriptscriptstyle CA}$	$g_{\scriptscriptstyle AB}$	$1+g_{BC}$	$\tau_{2}^{+} \tau_{3}^{/2}$	$\tau_3/2$	$\tau_1 + \tau_2 + \tau_3/2$	$(1 + g_A)/2$
$\mathbf{S}_{6}, \mathbf{S}_{1}$	$g_A > g_C > g_B$	$-g_{BC}$	$-g_{CA}$	$1-g_{AB}$	$\tau_1 + \tau_2 + \tau_3/2$	τ ₃ /2	$\tau_1 + \tau_3/2$	$(1 - g_c)/2$

Относительные длительности τ_1, τ_2, τ_3 и модулирующие функции потенциалов полумостов

Табл. 1 и 2 определяют модулирующие функции и состояния полумостов на каждом временном интервале модуляции. Таким образом, модулирующим функциям потенциалов полумостов в каждый момент времени поставлены в соответствие их дискретные состояния S_k , S_{k+1} , S_0 .

Метод классической ШИМ. Метод классической ШИМ основан на сравнении модулирующей функции с периодической пилообразной функцией. Коммутирующие функции χ_X полумостов X = A, B, C, согласно классическому методу модуляции, запишутся в следующем виде:

$$\chi_X = l(\gamma_X - \varphi(\tau)), \tag{5}$$

где т — относительное время; γ_X — модулирующие функции полумостов X = A, B, C.

Так как векторная ШИМ использует центрально-симметричное положение импульсов на интервале ШИМ, для модуляции классическим методом целесообразно использовать симметричную однополярную пилообразную функцию, которую можно записать в следующем виде:

$$\varphi(\tau) = \operatorname{abs}(2 \cdot (\tau - \operatorname{floor}(\tau)) - 1), \tag{6}$$

где abs(x) — модуль числа x; floor(τ) — целая часть числа τ .

Модулирующие функции полумостов определяются выражением

$$\gamma_X = \frac{1}{2} + g_X - \Psi_0, \tag{7}$$

где ψ_0 — функция предмодуляции.

Если принять, что функция предмодуляции $\psi_0 = 0$ и нулевая потенциальная функция моста $\gamma_0 = 1/2$, то модулирующие функции полумостов

$$\gamma_X = \frac{1}{2} + g_X. \tag{8}$$

Значению функции предмодуляции $\psi_0 = 0$ соответствует метод классический ШИМ.

Результаты анализа метода классической ШИМ. Поскольку наиболее востребованными являются алгоритмы с синусоидальными модулирующими функциями напряжений, то примем

$$g_X = \frac{a}{\sqrt{3}} \cos\left(\frac{2\pi\tau}{f^*} - (X-1)\frac{2\pi}{3}\right),$$
(9)

где $X = 1, 2, 3; f^*$ — относительная частота модуляции; a — коэффициент амплитуды напряжения; f^* — большая величина, обычно принимающая значения 10 - 200.

Если в выражение (8) подставить вместо g_X амплитуду функции (9) и положить $\gamma_X = 1$, то из полученного равенства можно найти максимальный коэффициент амплитуды $a = \sqrt{3}/2 = 0,866$, при котором отсутствует перемодуляция. Из неравенства a < 0,866 следует, что центрально-симметричная синусоидальная ШИМ не полностью использует величину модулируемого напряжения моста U_d . При a > 0,866 возникает режим перемодуляции, который приводит к возникновению низкочастотных гармоник и существенному ухудшению качества напряжения. Таким образом, в методе классической синусоидальной ШИМ напряжение источника питания используется не полностью.

Модифицированный метод классической ШИМ предполагает $\psi_0 \neq 0$. Множество функций предмодуляции ψ_0 определяет множество методов ШИМ. Можно подобрать такую функцию предмодуляции ψ_0 , которая устранит недостаток классического метода ШИМ, сделав его идентичным методу векторной ШИМ. Введем ограничения на модулирующие функции полумостов:

$$0 \le \gamma_{_{Y}} \le 1. \tag{10}$$

Выполнение данных неравенств позволяет избежать перемодуляции. Упорядочим модулирующие функции полумостов на интервале ШИМ:

$$0 \le \gamma_{X(A)} \le \gamma_{X(B)} \le \gamma_{X(C)} \le 1,$$

где X(A), X(B), X(C) — новые имена полумостов X = A, B, C.

Учитывая, что модулирующие функции ключей полумостов *X* = *A*, *B*, *C* определены выражением (7), модулирующие функции напряжений должны удовлетворять неравенствам:

$$-1/2 + \psi_0 \le g_{X(A)} \le g_{X(B)} \le g_{X(C)} \le 1/2 + \psi_0$$

откуда следует, что

$$\psi_{\min} = -1/2 + g_{X(C)} \le \psi_0 \le 1/2 + g_{X(A)} = \psi_{\max}$$

Функцию предмодуляции определим как среднее значение между ψ_{min} и ψ_{max} :

$$\psi_0 = \frac{\psi_{\max} + \psi_{\min}}{2} = \frac{g_{X(A)} + g_{X(C)}}{2} = \frac{\min\{g_A, g_B, g_C\} + \max\{g_A, g_B, g_C\}}{2}.$$
 (11)

Результаты анализа модифицированного метода классической ШИМ. Минимальное значение модулирующих функций полумостов

$$\gamma_{X(A)} = \frac{1}{2} + g_{X(A)} - \psi_0 = \frac{1 + g_{X(A)} - g_{X(C)}}{2}.$$
(12)

Заметим, что $g_{\chi(A)} - g_{\chi(C)}$ является модулирующей функцией полумостов и удовлетворяет неравенству $g_{\chi(A)} - g_{\chi(C)} \ge -1$. Тогда минимальное значение модулирующих функций полумостов (12) при использовании функции предмодуляции, определенной формулой (11), удовлетворяет неравенству $\gamma_{\chi(A)} \ge 0$. Это неравенство совпадает с одним из исходных неравенств (10), удовлетворение которых исключает возникновение режима перемодуляции.

Максимальное значение модулирующих функций полумостов

$$\gamma_{X(C)} = \frac{1}{2} + g_{X(C)} - \psi_0 = \frac{1 + g_{X(C)} - g_{X(A)}}{2}.$$
(13)

Заметим, что $g_{\chi(C)} - g_{\chi(A)}$ является модулирующей функцией полумостов и удовлетворяет неравенству $g_{\chi(C)} - g_{\chi(A)} \le 1$. Тогда максимальное значение модулирующих функций полумостов (13) при функции предмодуляции, определенной формулой (11), удовлетворяет неравенству $\gamma_{\chi(C)} \le 1$. Это неравенство совпадает с одним из исходных неравенств (10). Таким образом, функция предмодуляции (11) исключает возникновение режима перемодуляции.

Учитывая приведенные ранее выкладки, коммутационные функции ключей можно записать в следующем виде:

$$\chi_X = l(g_X + \gamma_0 - \varphi(\tau)), \tag{14}$$

где $\gamma_0 = \frac{1 - \max_{X = A, B, C} \{g_X\} - \min_{X = A, B, C} \{g_X\}}{2}$ — нулевая потенциальная функция полумостов.

Графики модулирующих функций полумостов и нулевой потенциальной функции приведены на рис. 3.

Рис. 3. Модулирующие функции полумостов и нулевой потенциальной функции

Обсуждение методов ШИМ. Метод классической ШИМ неполностью использует напряжение источника питания. Стремление увеличить коэффициент амплитуды напряжений *а*выше его граничного значения a = 0,866 ведет к появлению в составе модулированного напряжения гармоник низкой частоты и, как следствие, к существенному искажению формы порождаемого их тока.

Использование функции предмодуляции ψ_0 позволяет устранить основной его недостаток — неполное использование напряжения источника питания. Можно высказать гипотезу о том, что использование полученной нулевой потенциальной функции в формуле (14) ведет не только

к повышению граничного значения коэффициента амплитуды до единицы, но и к улучшению гармонического состава токов в нагрузке. Исследование гармонического состава токов является предметом дальнейших исследований.

Метод векторной ШИМ по отношению к методу классической ШИМ имеет существенно более сложное формальное описание. Используя табл. 2 и полученное выражение (14), можно заметить, что данная функция является обобщенной записью функций графы γ_0 табл. 2. Таким образом, метод векторной ШИМ, по сути, идентичен методу классической ШИМ. Если будет определен другой порядок модуляции в векторной ШИМ, то соответствующим подбором функции предмодуляции можно добиться их идентичности.

Заключение (Conclusion)

Исследование векторного и классического методов ШИМ показало, что оба метода дают один и тот же результат, несмотря на то, что излагаются в разных формальных терминах. Добиться идентичности методов векторной и классической ШИМ позволяет использование функции предмодуляции специального вида. Усовершенствованный метод классической ШИМ формализуется существенно проще векторного метода, что облегчает его программную реализацию. Подбирая вид пилообразной модулирующей функции и функции предмодуляции, можно реализовать всевозможное многообразие методов ШИМ. Такая трактовка методов ШИМ открывает возможности для аналитической оптимизации ШИМ по критерию качества тока в нагрузке. Применение преобразователей частоты с оптимальной ШИМ позволит уменьшить потери энергии в гребных электродвигателях и их вибрацию.

СПИСОК ЛИТЕРАТУРЫ

1. *Holtz J.* Pulsewidth modulation for electronic power conversion / J. Holtz // Proceedings of the IEEE. — 1994. — Vol. 82. — Is. 8. — Pp. 1194–1214. DOI: 10.1109/5.301684.

2. *Holmes D. G.* Pulse width modulation for power converters: Principles and Practice/D. G. Holmes, T. A. Lipo. — John Wiley & Sons, 2003. — 734 p.

3. *Trzynadlowski A. M.* Space vector PWM technique with minimum switching losses and a variable pulse rate / A. M. Trzynadlowski, R. L. Kirlin, S. F. Legowski // IEEE Transactions on Industrial Electronics. — 1997. — Vol. 44. — Is. 2. — Pp. 173–181. DOI: 10.1109/41.564155.

4. Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты / Р. Т. Шрейнер. — Екатеринбург: УРО РАН, 2000. — 654 с.

5. *Демкин В. И.* Быстрый метод пространственно-векторной широтно-импульсной модуляции / В. И. Демкин, А. А. Бодрова, В. И. Логвин, Б. И. Звягинцев // Молодой ученый. — 2015. — № 22 (102). — С. 137–141.

6. *Чаплыгин Е. Е.* Широтно-импульсная модуляция с пассивной фазой в трехфазных инверторах напряжения / Е. Е. Чаплыгин, С. В. Хухтиков // Электричество. — 2011. — № 5. — С. 53–61.

7. Виноградов А. Б. Векторное управление электроприводами переменного тока / А. Б. Виноградов. — Иваново: ГОУВПО «Ивановский государственный энергетический университет имени В. И. Ленина», 2008. — 298 с.

8. *Калачев Ю. Н.* Векторное регулирование (заметки практика) / Ю. Н. Калачев. — М.: ЭФО, 2013. — 63 с.

9. *Юдинцев А. Г.* Система управления трёхфазным автономным инвертором с векторной широтноимпульсной модуляцией / А. Г. Юдинцев, В. М. Рулевский // Фундаментальные исследования. — 2015. — № 5-1. — С. 168–173.

10. *Чаплыгин Е. Е.* Спектральное моделирование преобразователей с широтно-импульсной модуляцией: учебное пособие / Е. Е. Чаплыгин. — М.: МЭИ, 2009. — 56 с.

11. Титяев Д. К. Сравнительный анализ векторной и традиционной широтно-импульсной модуляции / Д. К. Титяев, Д. Н. Мирошник // Автоматизація технологічних об'єктів та процесів. Пошук молодих. Збірник наукових праць IV Міжнародної науково-технічної конференції аспірантів та студентів в м. Донецьку 11–14 травня 2004 р. — Донецьк: ДонНТУ, 2004. — С. 301–306.

12. Виноградов А. Б. Сравнительный анализ энергетических показателей алгоритмов управления высоковольтным многоуровневым преобразователем / А. Б. Виноградов, А. Н. Сибирцев, А. А. Коротков, Д. А. Монов // Тр. VII Междунар. (XVIII Всерос.) конф. по автоматизированному электроприводу (АЭП-2012). — Иваново: ИГЭУ, 2012. — С. 109–113.

13. Andriyanov A. I. A comparative characteristic of different kinds of pulse-width modulation with respect of the topologies of existence of periodic operating conditions / А. I. Andriyanov, G. Ya. Mikhal'chenko // Электричество. — 2004. — № 12. — С. 46–54.

14. *Обухов С. Г.* Широтно-импульсная модуляция в трехфазных инверторах напряжения / С. Г. Обухов, Е. Е. Чаплыгин, Д. Е. Кондратьев // Электричество. — 2008. — № 7. — С. 23а–31.

15. *Зиновьев Г. С.* Основы силовой электроники: учеб. пособие / С. Г. Зиновьев. — М.: Юрайт, 2012. — 667с.

16. *Чаплыгин Е. Е.*Способ управления автономным инвертором напряжения с векторной ШИМ / Е. Е. Чаплыгин, С. В. Хухтиков // Практическая силовая электроника. — 2010. — № 39. — С. 40–43.

17. *Чубуков К. А.* Исследование и разработка вариантов широтно-импульсной модуляции в трехфазных автономных инверторах с двигательной нагрузкой: автореф. дис. ... канд. техн. наук: 05.09.12 / К. А. Чубуков. — Чебоксары, 2010. — 23 с.

REFERENCES

1. Holtz, Joachim. "Pulsewidth modulation for electronic power conversion." *Proceedings of the IEEE* 82.8 (1994): 1194-1214. DOI: 10.1109/5.301684.

2. Holmes, D. Grahame, and Thomas A. Lipo. *Pulse width modulation for power converters: principles and practice*. John Wiley & Sons, 2003.

3. Trzynadlowski, Andrzej M., R. Lynn Kirlin, and Stanislaw F. Legowski. "Space vector PWM technique with minimum switching losses and a variable pulse rate [for VSI]." *IEEE Transactions on Industrial Electronics* 44.2 (1997): 173–181. DOI: 10.1109/41.564155.

4. Shreiner, R.T. Matematicheskoe modelirovanie elektroprivodov peremennogo toka s poluprovodnikovymi preobrazovatelyami chastoty. Ekaterinburg: URO RAN, 2000.

5. Demkin, V.I., A.A. Bodrova, V.I. Logvin, and B.I. Zvyagintsev. "Bystryi metod prostranstvenno-vektornoi shirotno-impul'snoi modulyatsii." *Molodoi uchenyi* 22(102) (2015): 137–141.

6. Chaplygin, E.E., and S.V. Khukhtikov. "Shirotno-impul'snaya modulyatsiya s passivnoi fazoi v trekhfaznykh invertorakh napryazheniya." *Elektrichestvo* 5 (2011): 53–61.

7. Vinogradov, A.B. *Vektornoe upravlenie elektroprivodami peremennogo toka*. Ivanovo: GOUVPO «Ivanovskii gosudarstvennyi energeticheskii universitet imeni V.I. Lenina», 2008.

8. Kalachev, Yu.N. Vektornoe regulirovanie (zametki praktika). M.: EFO, 2013.

9. Yudintsev, A.G., and V.M. Rulevskiy. "The vector pulse width modulation control system for three-phase voltage source inverter." *Fundamental research* 5-1 (2015): 168–173.

10. Chaplygin, E.E. Spektral'noe modelirovanie preobrazovatelei s shirotno-impul'snoi modulyatsiei. Uchebnoe posobie. M.: MEI, 2009.

11. Tityaev, D.K., and D.N. Miroshnik. "Sravnitel'nyi analiz vektornoi i traditsionnoi shirotno-impul'snoi modulyatsii." Avtomatizatsiya tekhnologichnikh ob'ektiv ta protsesiv. Poshuk molodikh. Zbirnik naukovikh prats' IV Mizhnarodnoï naukovo-tekhnichnoï konferentsiï aspirantiv ta studentiv v m. Donets'ku 11–14 travnya 2004 r. Donets'k: DonNTU, 2004: 301–306.

12. Vinogradov, A.B., A. N. Sibirtsev, A. A. Korotkov, and D. A. Monov. "Sravnitel'nyi analiz energeticheskikh pokazatelei algoritmov upravleniya vysokovol'tnym mnogourovnevym preobrazovatelem." *Trudy VII Mezhdunar.* (XVIII Vseros.) konf. po avtomatizirovannomu elektroprivodu (AEP-2012). Ivanovo: IGEU, 2012: 109–113.

13. Andriyanov, A.I., and G.Ya. Mikhal'chenko. "A comparative characteristic of different kinds of pulsewidth modulation with respect of the topologies of existence of periodic operating conditions." *Electrical Technology Russia* 12 (2004): 46–54.

14. Obukhov, S.G., E.E. Chaplygin, and D.E. Kondrat'ev. "Shirotno-impul'snaya modulyatsiya v trekhfaznykh invertorakh napryazheniya." *Elektrichestvo* 7 (2008): 23a–31.

15. Zinov'ev, G.S. Osnovy silovoi elektroniki: Uchebnoe posobie. M.: Yurait, 2012.

16. Chaplygin, Evgeniy, and Sergei Khukhtikov. "Control Method For Self-Commutated Voltage Inverter With Vector PWM." *Practical Power Electronics* 39 (2010): 40–43.

17. Chubukov, K.A. Issledovanie i razrabotka variantov shirotno-impul'snoi modulyatsii v trekhfaznykh avtonomnykh invertorakh s dvigatel'noi nagruzkoi. Abstract of PhD diss. Cheboksary, 2010.

ИНФОРМАЦИЯ ОБ АВТОРАХ	INFORMATION ABOUT THE AUTHORS			
Белоусов Игорь Владимирович —	Belousov, Igor V. —			
доцент	Associate professor			
ФГБОУ ВО «ГУМРФ имени адмирала	Admiral Makarov State University of Maritime			
С. О. Макарова»	and Inland Shipping			
198035, Российская Федерация, Санкт-Петербург,	5/7 Dvinskaya Str., St. Petersburg, 198035,			
ул. Двинская, 5/7	Russian Federation			
e-mail: kaf_electroprivod@gumrf.ru, ibel@bk.ru	e-mail: kaf_electroprivod@gumrf.ru, ibel@bk.ru			
Самосейко Вениамин Францевич —	Samosejko, Veniamin F. —			
доктор технических наук, профессор	Dr. of Technical Sciences, professor			
ФГБОУ ВО «ГУМРФ имени адмирала	Admiral Makarov State University of Maritime			
С. О. Макарова»	and Inland Shipping			
198035, Российская Федерация, Санкт-Петербург,	5/7 Dvinskaya Str., St. Petersburg, 198035,			
ул. Двинская, 5/7	Russian Federation			
e-mail: kaf electroprivod@gumrf.ru,	e-mail: kaf electroprivod@gumrf.ru,			
samoseyko@mail.ru	samoseyko@mail.ru			
Бровцинова Людмила Михайловна —	Brovtsinova, Ludmila M. —			
доцент	Associate professor			
ФГБОУ ВО «ГУМРФ имени адмирала	Admiral Makarov State University of Maritime			
С. О. Макарова»	and Inland Shipping			
198035, Российская Федерация, Санкт-Петербург,	5/7 Dvinskaya Str., St. Petersburg, 198035,			
ул. Двинская, 5/7	Russian Federation			
e-mail: kaf_electroprivod@gumrf.ru	e-mail: kaf_electroprivod@gumrf.ru			

Статья поступила в редакцию 14 марта 2018 г. Received: March 14, 2018.