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A new nonlinear controller for direct flux and torque control (DFTC) of a doubly-fed induction generator
(DFIG) based on a single-rotor wind turbine (SRWT) using the fractional-order second-order continuous sliding mode
(FOSOCSM) controller is presented in this paper. Three different controllers are proposed to control the electromagnetic
torque and rotor flux of the doubly-fed induction generator driven by a single-rotor wind turbine. The main goal
of the proposed DFTC control structure is to improve the quality of the electromagnetic torque and stator current
of the SRWT system by reducing electromagnetic torque undulations, stator current, and rotor flux undulations
in the DFIG-SRWT systems. The mathematical model of the DFIG has been described. The descriptions of the modified
space vector modulation (MSVM) strategy and the proposed FOSOCSM controller have been presented. The
DFTC-MSVM control structure with proposed FOSOCSM controllers has been described. This proposed strategy has
been shown to be robust and stable against parametric uncertainties and load electromagnetic torque. The validity,
robustness, and effectiveness of the proposed DETC-FOSOCSM technique are demonstrated through simulation studies
in the MATLAB® software environment. Numerical simulation results demonstrate that the proposed DFTC control
scheme with proposed FOSOCSM controllers has a faster transient response than traditional DFTC and DFTC with
classical SOCSM controllers. Also, it reduces ripples in both electromagnetic torque of stator current, and rotor flux
significantly compared to the classic technique and DFTC with traditional SOCSM controllers.
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(DFIG) ¢ ucnonv3o8anuem KOHMpPoOiepa HeNPepvbi6HO2O CKOb3sWe20 pexcuma emopoeo nopsoka (FOSOCSM).
Ilpeonooicenvl k cpagnenuio mpu paziuyHelx KOHMpPOoJiepa Ojis YRPAGIeHUs INeKMPOMASHUMHBIM MOMEHMOM U NO-
MOKOM POMOpa ACUHXPOHHO20 2eHePaAmopa ¢ 0BOUHbLM NUMAHUEM, NPUBOOUMO20 8 Oelicmaue sempoxonecom. Oc-
HOBHOI Yenvio npednazaemoii cmpykmypwl ynpagienus DFTC sgnsemcs yiyuuieHue Kauecmasa 31eKmpomMacHUmHo20
Momenma u moxka cmamopa cucmemvl SRWT 3a cuem ymenvuieHus nyavscayuil 31eKmpomMacHUmHoO20 MOMeHmd, moKkd
cmamopa u nyavcayuil nomoxa pomopa 6 cucmemax DFIG-SRWT. Onucana mamemamuuecxkas mooens DFIG.
Ipeocmasnenvt onucanust MOOUGUYUPOBAHHOU CIMPame2uu NPOCMPAHCMEECHHOU 8eKMOopHoU modyiayuu (MSVM)
u npeonazaemozo xonmpoaiepa FOSOCSM. Onucana cmpyxmypa ynpaenenus DEFTC—-MSVM ¢ npeonazaemvimu
xkoumponnepamu FOSOCSM. [Tokazano, umo npediazaemas cmpame2usi s8Js1emcst HAOEICHOU U CMAaOUIbHOU 8 OM-
HOWEHUU NAPAMEMPUYECKUX HeonpeoeieHHOCmell U INeKMPOMASHUMHO20 MOMeHma Hazpy3Kku. O6OCHO8aHHOCb,
Haoexcnocmy u d@exmusnocms oannou memoouxu DFTC—FOSOCSM npodemoncmpuposanul 8 xo0e umumayu-
OHHbBIX UCCAed08anutll 8 npoecpammuoll cpede MATLAB®. Pe3yiomambsl 4ucieHHO20 MOOeIUPOBAHUsL NOKA3bIBAIONI,
umo npeonodcennasn cxema ynpasnenus DFTC ¢ konmpoanepamu FOSOCSM umeem b6onee bvicmpyro nepexoonyio
xapaxmepucmuxy, yuem mpaouyuonutsvie DFTC u DFTC c kaaccuueckumu koumponnepamu SOCSM, umo 3nauumenvro
VMeHbUaem nyibCayul Kax 8 2NeKmpoMAZHUMHOM MOMENNe MOKA CIMamopa, max i 8 NOMoKe pomopa no CPAaeHeHuIo
¢ knaccudeckou mexuuxou u ¢ DFTC ¢ mpaouyuonnvimu xonmpoanepamu SOCSM.

Kurouesvie crnosa: semposnepeemuyeckas ycmanoska, npsimoe ynpasienue nomoKom, Kpymsauuil MOMeHm,
ACUHXPOHHDIL 2eHepamop ¢ OB0UHbIM NUMAHUEM, HENPEPbIBHBIN CKOIb3AWUL PEHCUM BMOPO2O NOPAOKA, MOOUDU-
YUPOBAHHAS NPOCMPAHCIMEEHHAS 8EKMOPHASL MOOVIAYUSL.
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Introduction

In recent years, there has been a great deal of demand for the use of renewable energies in generating
electric power, especially wind energy, due to its advantages compared to other renewable sources.
Among the advantages of wind energy, we mention that it is infinite energy, inexpensive, and can be
used easily in contrast to petroleum energy, and the low cost of production of electrical energy from
some sources. In [1], the completed wind energy capacity at the end of 2021 reached 800 GW, this large
value reflects the increasing demand for this source. This value is constantly increasing over the years.
To generate electric power using wind energy we need electric generators, the latter are multiple and
many, for example, we mention doubly-fed induction generators (DFIG), synchronous generator (SG),
Squirrel cage asynchronous generator (SCAG), coiled rotor asynchronous generator (CRAG). These
generators can be used in the case of variable and constant wind speeds. Among the generators used in
variable speed wind turbines, we find DFIG the most used compared to other types [2—4]. However, the
DFIG gives more efficiency in the case of variable wind speed compared to a synchronous generator.
Therefore, different control algorithms have been proposed for DFIGs. Among the most famous and most
widely used methods in the field of generator control, we find direct flux and torque control (DFTC) [5],
field-oriented control (FOC) [6], fuzzy control [7], sliding mode control (SMC) [8], super twisting
algorithm [9], direct active and reactive power control (DARPC) [10], second-order sliding mode control
(SOSMC) [11], neural control [12], backstepping control [13] and hybrid control [14—19]. Among these
algorithms, the classical DFTC technique offers many advantages include: simplicity in calculations,
fast dynamic response, robustness algorithm, easy to implementation and robustness against machine
parameter mismatches [20—22]. The DFTC technique presented in [23], imposes some drawbacks such
as electromagnetic torque ripple, variable switching frequencies, flux ripple, and harmonic distortion of
current. Although several techniques have been designed with fixed switching frequency [24, 25], these
techniques require high sampling frequency to show good transient performance and steady-state. In
order to take high frequencies, high-speed sensors must be used and they must also be strong against
external noise, and this is what makes the cost very high. In [26], the DFTC technique is presented
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based on the traditional space vector modulation (SVM) strategy, and a neural proportional-integral
(NPI) controller is used to minimizes rotor flux and electromagnetic torque undulations. This designed
strategy is a simple algorithm, robust control and easy to implement compared to vector control. The
NPI controller used in this DFTC strategy makes it necessary for minimizing the harmonic distortion
of current and response time. The numerical simulation results show the characteristics of the designed
technique. In [27], the authors proposed the use of a twelve sectors DFTC method with a fuzzy controller
applied to the DFIG. In this proposed technique, the switching table was replaced by fuzzy logic control.
The proposed technique is more robust than traditional DFTC control. However, the harmonic distortion
of current is reduced by fuzzy DFTC. In [28], the DFTC technique based on a neural switching table has
been proposed. The simulation results show the superiority of the designed method. In [29], a modified
DFTC method was proposed based on STA controllers with a constant switching frequency. STA and
neural algorithms were combined to improve the performances of the DFTC method [30]. In [31], the
electromagnetic torque and rotor flux undulations were reduced when using the DFTC method with fuzzy
STA controllers. This proposed technique is more robust than the traditional technique. In addition, the
harmonic distortion of current was reduced by DFTC with fuzzy STA controllers. In [32], the second-
order continuous sliding mode-based DFTC technique (SOCSM-DFTC) is used to regulate and control the
rotor flux and electromagnetic torque of the DFIG-based wind turbines. In addition, this control reduces
more the rotor flux and electromagnetic torque undulations compared to the traditional DFTC control
scheme. Moreover, it does not take into account the mathematical form of the system and its analytical
information. In this method, two SOCSM controllers are used to control the torque and flow together.
On the other hand, due to the non-linearity and ease of controlled tuning, it is very easy to improve the
performance and efficiency of the DFIG according to this reference.

In this work, a new DFTC method for DFIG in wind power conversion systems is proposed. The
designed technique is a fractional-order SOCSM-based DFTC control scheme (FOSOCSM-DFTC). The
objective of improving the performance of the SOCSM controller by fractional calculus is to reduce the
electromagnetic torque and rotor flux error of the rotor DFIG in the event of changing machine parameters
(Rs, Rr, Ls, and Lr). The stability of the fractional-order SOCSM controller is proven using the Lyapunov
stability technique. On the other hand, the proposed fractional-order SOCSM controller is robust, easy to
implement, simple algorithm, and easy to adjust.

The main contributions of this paper are as follows:

— anew robust control theory is proposed for the DFIG-based single-rotor wind turbine system.

— the proposed DFTC control scheme with fractional-order SOCSM controller (FOSOCSM) is robust
compared to the classical DFTC control technique with Pl and SOCSM controllers.

— the DFTC control scheme with fractional-order SOCSM controllers improved the dynamic
performances of the DFIG-based single-rotor wind turbine system.

— the proposed control scheme reduced electromagnetic torque and rotor flux ripples.

— the proposed method is simple and easy to implement compared to field-oriented control.

This research work is presented in the following section; in section 2, the DFIG mathematical
model is presented. The modified SVM technique is presented in section 3. The proposed fractional-
order SOCSM controller is detailed in section 4. Section 5 describes the DFTC control scheme of DFIG
based on a modified SVM technique and two PI controllers. The designed DFTC control structure is
evaluated and the simulated results are analyzed in Section 6. Finally, concluding remarks are given in
the last section.

Methods and Materials
DFIG model. In order to give the mathematical model of an electric machine, the Park transform
is the most commonly used. The Park transformation is an uncomplicated mathematical method used to

give a mathematical concept to electric machines. The rotor and stator voltage are given, respectively, as
follows [33], [34]:

8
(-]
(1)
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I/qs = Rs]qs + O‘)Sst + _qu’

dt
where o and o — are respectively the rotor and stator electrical pulsations, while o is the mechanical
one.
The rotor and stator pulsations and rotor speed are interconnected by the following equation:
O =0 T

Equation (2) represents the stator and rotor flux of the three-phase DFIG.

\‘lfdr = Mldv + Lr]dr;
qu = MIqs + Lr‘]qr;

st = Mla’r +Ls1a’s;
l‘r!qs = Mqr +leqs

@)

v, Vo Vi V), v, Y, Ve ‘qu)’ (€, l,.1, Iqs), are respectively the stator and rotor voltages, fluxes and
currents, Rr and Rs are respectively the resistances of the stator and rotor windings, L, L, and M are re-
spectively the inductance own rotor, stator, and the mutual inductance between two coils.

The electric machine contains two parts, the electrical part and the mechanical part, the electrical
part is represented in the equations of voltages, and flux, and the mechanical part is represented by the

following equation:

7;=TV+JC;—?+EQ. 3)

The torque of the machine is related to the flux and current, and its expression is given by the fol-
lowing equation:

3IM
7—; = EL_np (_stlqr + quldr)' (4)

s

Where J is the inertia, Q is the mechanical rotor speed, 7' is the load torque, and F is the viscous
friction coefficient. The stator active and reactive powers of the stator side are defined as:

QS :1,5(—VSIS +V51 S);
{ e e ()

])s = 1’ S(I/:]slqs + Vds]ds)'

In order to develop a decoupled control of the stator’s active and reactive powers, we use a Park

2021 rop. Tom 13. Ne 6

reference frame linked to the stator flux. By supposing that the d-axis oriented along with the stator flux
position and based on equation (6) with neglecting R we can write [30]:

qu =0 and WS = st; (6)

Vds = WSO‘)s;
V=0
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M
Iqs = _]qr Z, .
;v M ®
ds LS dr LS
Equation (8) can be written as:
3( oy’ oy M
i —— | — 5 S + S S I ;
Q; 2 ( LS LS dr
- )
P.=(-151, %
Thus, the torque equation can be written as follows:
M
Te=—1.5L—np]qrq1ds. (10)

s

Modified SVM technique. Currently, most AC machine control uses the traditional SVM technique.
This is due to many advantages such as reduce the harmonic distortion of current, and robust modulation
technique compared to traditional pulse width modulation (PWM). The SVM technique is an algorithm
for the control of PWM. This technique is used to obtain alternating current and to control the speed of
AC motors. But this technique is difficult to implement compared to the traditional PWM technique,
especially with the multi-level inverters. In [35], an experimental result of the SVM technique with a neural
algorithm has been presented. The obtained results showed the effectiveness of the proposed method.
In [36], a simplified SVM technique was proposed to control the three-phase five-level cascaded H-bridge
inverter. The proposed method used in [36] significantly minimizes calculation time and efforts without
reducing the fundamental output voltage of the inverter. In [37, 38], a new SVM algorithm is proposed to
control the traditional inverter. This new technique is based on the calculated maximum and minimum
of three-phase voltages. This technique was used to control the five-phase inverter [39, 40]. A schematic
diagram of this modified SVM technique of a two-level inverter is shown in Figure 1. Through Figure 1,
we find that this method is very simple, easy, and it can be easily applied to multilevel inverters compared
to the traditional SVM technique.
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Figure I. Block diagram of the modified SVM technique [41]
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DFTC control with modified SVM technique. The classical DFTC methods have tremendous
applications in AC machines superior effectiveness drives. The classical DFTC method have significant
advantages over traditional field-oriented control. These advantages include minimized harmonic content
in output voltage, fast response dynamic, a simple algorithm, robust method, easy to apply, low cost, and
so on [32]. These multiple features and characteristics made this method the most widely used in the field
of controlling electrical machines, and in particular in the field of electric power generation. This method
depends on directly controlling the electromagnetic torque of the machine without using the inner rings
and PWM technique. This method uses a switching table and two hysteresis controllers to control the
electromagnetic torque and flux. In [41, 42], seven-level DFTC control was proposed to control the permanent
magnet synchronous motor (PMSM) and the induction motor (IM), respectively. In [43], DFTC control
with synergetic control was proposed to regulate the torque of the double star induction motor (DSIM).
The simulation results show the superiority of the proposed technique. In [44], four-level DFTC control
was proposed to control the IM drives. A Five-level DFTC method was proposed in [45], this proposed
technique was used to control the IM. In [46], 24-sectors DFTC control was proposed to control the IM
drives. In [47], four-level DFTC control was proposed to control the PMSM drives. In [48], a modified
DFTC technique was proposed based on traditional SVM, where four PI controllers were used to control
the torque and flux of DSIM drives.

In this section, we use the DFTC control scheme with modified SVM (MSVM) and PI controllers
to regulate the electromagnetic torque and rotor flux of DFIG-based wind turbines. This designed
DFTC control is shown in Figure 2. Through Figure 2, we find that this DFTC technique is a very
simple, robust method, easy, and it can be easily applied to other machines compared to field-oriented
control (FOC).
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Figure 2. Block diagram of the DFIG with DFTC-MSVM

This method needs to estimation the rotor flux and electromagnetic torque of DFIG. To estimate the
rotor flux and electromagnetic torque, we need to measure both voltage and stator current. On the other

m hand, the estimate of the stator flux is based on the parameter of the stator resistance.

The phase and amplitude of the stator flux are estimated by the relation equations (11) to (12):

t
V3= (= Ryl g+ V g
f (11)
=[(-R
0

“Ils(x S'Isoc + Vs(x)dt'
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Equation (12) represents the magnitude of stator flux:

Y, =AW+ (12)

0,= arctg(wxﬁ} (13)
Vo

The estimation of the electromagnetic torque is based on the rotor current and stator flux. Equation (14)

where 0 — is the phase of stator flux.

represents how to estimation the electromagnetic torque from rotor current and stator flux.

=SVl ) (14)

Despite the advantages of this designed DFTC method in this section, it has several disadvantages
similar to the classical method. This method does not eliminate the electromagnetic torque and rotor flux
undulations of the DFIG (see [32]). Also, the THD level remains somewhat high.

In order to reduce electromagnetic torque and rotor flux undulations, we propose in the next part
a new nonlinear method. This new method relies on the combination of two different methods in principle, to
obtain a more robust nonlinear method. And thus reduce electromagnetic torque and rotor flux undulations
of DFIG-based wind turbines.

Fractional order second-order continuous sliding mode. In this section, a new nonlinear control
was proposed. This the proposed method is named fractional-order second-order continuous sliding mode
(FOSOCSM) control. This proposed method is based on fractional calculus and the SOCSM approach. It
can be said that the new nonlinear method, is only an improvement in the performance and effectiveness of
the SOCSM controller. We used the fractional calculus feature to improve and develop the performance of
the SOCSM controller. The proposed FOSCSM controller is a very simple structure, more robust, easy to
adjust, and easy to implement. On the other hand, the FOSOCSM controller reducing more the chattering
phenomenon compared to the traditional SOCSM controller. This new nonlinear method offers better and
better performance than the classic SOCSM method, and this is what we will explain in the rest of the article.
Equation (15) represents the proposed FOSOCSM controller. By K| and K, the stability of the FOSOCSM
controller can be controlled. On the other hand, A represents fractional calculus. It can take positive or
negative values, depending on the system used.

w= (=K, |S|" sign(8S) -k, -sign|S|"* + [o.-sign(8) dr)*. (15)
Where K| and K, — is the constant gains.

DFTC with FOSOCSM controllers. The FOSOCSM-DFTC control structure used in this work
significantly minimizes the electromagnetic torque and rotor flux undulations of DFIG-based wind
turbines. This proposed control method is a modification of the proposed method in [32] to reduce
electromagnetic torque and rotor flux ripples. The proposed DFTC control technique is verified through
MATLAB software. Results are compared with traditional SOCSM and PI controllers to prove the
feasibility of the proposed FOSOCSM controllers. The proposed FOSOCSM-DFTC method, which is
designed to control rotor flux and electromagnetic torque of the DFIG-based wind turbines is shown
in Figure 3. Through Figure 3, we notice that this method is simple and uncomplicated and has almost
kept the same shape as the proposed method in [32], and the difference lies in the use of the proposed
FOSOCSM controller and modified SVM technique in this paper. On the other hand, in this proposed

method we used the same block to estimate the electromagnetic torque and rotor flux used in the case of
the traditional DFTC method with PI controllers.

95N "g1 oy “Hol 1202
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Figure 3. Block diagram of the DFIG with DFTC-FOSOCSM
Electromagnetic torque and rotor flux FOSOCSM controllers are used to influence respectively on

the two rotor voltage components as in (16) and (17).

v, =4S, "t Josign(s,, ) i’ (16)

: sign(Sw)— k, ~sign‘S‘W

v, =(-1, |S,,|" sign(S,, ) -k, -sign|STe|1/2 +fo- sign(STe)dt)}”, (17)

where the electromagnetic torque error S, = 7" — T and the rotor flux magnitude error S, =V -y, are
the sliding variables, and the constant gains k, and k, must check the stability conditions, A is the fractional
order (0 <A <1).

Results and Discussion

In this section, numerical simulations are carried out with a 1,5 MW DFIG attached to a 398 V/50 Hz
grid, by using the environment of MATLAB software. The proposed control techniques are simulated and
compared regarding stator current harmonics distortion, rotor flux ripple, reference tracking, electromagnetic
torque ripples, and robustness against DFIG parameter variations.

The DFIG used in our work has the following parameters: P = 1,5 MW, p =2, R = 0,012 Q,
50 Hz, 380/696 V, R = 0.021 Q, L = 0.0137 H, J = 1000 kg'm?, f = 0.0024 Nm/s, L = 0,0136 H and
L, =0,0135 H [32], [33].

First test. This test represents the reference tracking test. This test aims to study the behavior
of the proposed methods of control by taking the generated speed as constant and equal to the nominal
value. As well as knowing which method provides the best results and reduces electromagnetic torque and
rotor flux ripples together. The results obtained are shown in Figures 4—6. Figure 4a represents the stator
current signal of the machine. From this figure, the shape of the stator current is sinusoidal, and on the
other hand, its value is related to the reference value of the electromagnetic torque and the system itself.
Figure 4, b and 4, ¢ represents the rotor flux and electromagnetic torque of the designed DFTC methods,
respectively. We note through these figures that the electromagnetic torque and rotor flux tracks almost
perfectly their references values for all the proposed methods. By looking at Figures 5, @, 5, b and 5, ¢, we
notice that the DFTC-FOSOSMC method reduces more ripples in stator current, electromagnetic torque,
and rotor flux compared with DFTC-SOSMC and DFTC-PI methods. On the other hand, Figures 6, a,
6, b and 6, ¢ show the THD value of stator current (/, ) for both DFTC techniques. It can be observed
that the THD value is minimized for DFTC-FOSOCSM (0,14 %) when compared to DFTC-PI (0,73 %)
and DFTC-SOCSM (0,23 %).
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Figure 4. The results obtained:
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Second test.The principal objective of this test is to examine the influence of a machine parameters
variation on the rotor flux, stator current, and electromagnetic torque and behavior for designed DFTC
techniques. The simulation results are shown in Figures 7 to 9. These figures show that the electromagnetic
torque and rotor flux follow the references with high accuracy for all the proposed methods (see
Figure 7, b and 7, ¢). However, the stator current remains sinusoidal (see Figure 7, a) and is related
to the system and the reference value of the electromagnetic torque and rotor flux. On the other hand,
we notice by looking at Figures 8a, 8b and 8c that the DFTC-FOSOCSM method significantly reduced
the ripples of stator current, electromagnetic torque, and rotor flux compared to both DFTC-PI and
DFTC-SOCSM methods.
Figures 9, a—c show the THD value of stator current (I ) for three proposed DFTC methods.
It can be observed that the THD value is reduced for DFTC-FOSOCSM (0.18 %) when compared
to DFTC-PI (0,85 %) and DFTC-SOCSM (0,27 %). This result is attractive for wind turbine applications
to guarantee the quality and stability of the generated power when the machine parameters are changing.
Thus, it can be said that the proposed FOSOCSM controller provided better performance than both PI
and SOCSM, and this is what we observed through two tests, as well as the THD ratio and the value of
electromagnetic torque and rotor flux ripples.
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Figure 7. The results obtained:
a — Current Jas; b — Rotor flux; ¢ — Electromagnetic torque 7e
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Figure 9. (THD) values obtained:
a — THD (DFTC-PI); b— THD (DFTC-SOCSM); ¢ — THD (DFTC-FOSOCSM)

A comparative study between the methods proposed in this work is necessary and imperative to
identify the strengths and weaknesses of each method. Table 1 represents a comparative study between the
various proposed methods. It is clear that the proposed DFTC-FOSOCSM technique is more robust than
the DFTC-PI and DFTC-SOSCSM methods. The proposed method provided better results in both dynamic
responses, THD, rise time, overshoot, settling time compared to DFTC-PI and DFTC-SOSCSM methods.
On the other hand, the proposed method gave a very good quality of the output current of the generator, as
well as less flux and torque fluctuations.

Finally, a comparative study of the obtained value of THD of the stator current with some publications.
This is in order to know the efficacy of the proposed method with other works and methods that exist on
the ground. Table 2 represents the comparison between the proposed method and some published works.
Through this table, we find that the DFTC-FOSOCSM method gives a much better value than several
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methods implemented in various scientific works, and this is because of the use of the proposed FOSOCSM
controller. Accordingly, it can be concluded that the DFTC method with the proposed FOSOCSM controller

is very robust compared to some controls.

Table 1
Compare the results obtained from the designed methods with the DFTC-PI
Techniques
Criteria
DFTC-PI DFTC-SOCSMC DFTC-FOSOCSMC
Dynamic response (s) Medium Fast Fast
THD (%) 0,73 0,23 0,14
Reduce torque and flux ripples Acceptable Good Excellent
Simplicity of calculations Simple Complicated Complicated
Settling time (ms) High Medium Medium
Overshoot (%) Remarkable ~ 22 % | Remarkable =~ 10 % | Neglected near = 1,5 %
Torque and flux tracking Good Very good Excellent
Simplicity of converter and filter design Simple Simple Simple
Sensitivity to parameter change High Medium Medium
Rise Time (s) High Medium Medium
Torque: ripple (N.m) Around 700 Around 260 Around 130
Improvement of transient performance Good Very good Excellent
Quality of stator current Acceptable Very good Excellent
Rotor flux: ripple (wb) Around 0,015 Around 0,005 Around 0,001
Table 2
Compare THD current with other control strategies
Techniques THD, %
Classical DTC 2,57
Ref. [32]
SOCSM-DTC 0,98
Ref. [49] 1,14
Ref. [50] FOC 3,7
Ref. [51] DPC 2,56
Ref. [17] 1,15
DFTC-PI 0,73
fﬁfﬁfﬁf DFTC-SOCSM 0,23
DFTC-FOSOCSM 0,14

Conclusion

This work presents a new DFTC technique for DFIG based on fractional-order second-order continuous
sliding mode controllers. The proposed DFTC technique is robust and a modified SVM strategy is used. The
rotor/stator current is nearly sinusoidal and there is a significant minimization in rotor flux and electromagnetic
torque undulations. The same DFTC technique is explored to control DFIG under unbalanced grid voltage
conditions. A direct and quadrature rotor voltage based on fractional-order second-order continuous sliding
mode controllers is proposed. Without using the rotating reference frame and sequential decomposition, the
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proposed DFTC method with fractional-order second-order continuous sliding mode controllers minimizes
the undulations in the rotor flux and electromagnetic torque. The proposed DFTC-FOSOCSM strategy has
improved the robustness of the DFTC technique, increasing its characteristics in transient and dynamic
conditions in terms of efficiency, overshoot, rapidity, rise time, and stability. Simulation results show the
performances of the designed nonlinear controller.

Indeed, this designed DFTC strategy deserves attention because they solve the drawbacks of high
undulations of the electromagnetic torque and flux for wind power systems. On the other hand, this research
work in this paper is limited given that the wind speed is constant. In order to further enhance the robustness
of the DFIG-SRWP system under previous concerns in future papers this is through interactions between
DFIGs with different strategies, such as neural algorithm, fractional-order PI, genetic algorithm, neuro-
fuzzy control, and type 2 fuzzy logic control.

So, summarizing, the main findings of this research are as follows:

— a simple nonlinear controller was designed.

— minimizes the electromagnetic torque and rotor flux ripples.

— minimization of the THD of stator current by 80,82 %, 39,13 % of both DFTC-PI and
DFTC-SOCSM, respectively.

— anew DFTC technique was presented and confirmed with numerical simulation.

The work can be extended with neuro-FOSOCSM controller (NFOSOCSM) or terminal FOSOCSM
to obtain more minimum electromagnetic torque ripple, zero settling time, and zero steady-state error. Direct
vector control-based FOSOCSM methods can also be taken up as an extension of this work.
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